首页> 外文OA文献 >Efficiently Enumerating all Maximal Cliques with Bit-Parallelism
【2h】

Efficiently Enumerating all Maximal Cliques with Bit-Parallelism

机译:用位平行有效地枚举所有最大集团

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The maximal clique enumeration (MCE) problem has numerous applications inbiology, chemistry, sociology, and graph modeling. Though this problem is wellstudied, most current research focuses on finding solutions in large sparsegraphs or very dense graphs, while sacrificing efficiency on the most difficultmedium-density benchmark instances that are representative of data sets oftenencountered in practice. We show that techniques that have been successfullyapplied to the maximum clique problem give significant speed gains over thestate-of-the-art MCE algorithms on these instances. Specifically, we show thata simple greedy pivot selection based on a fixed maximum-degree first orderingof vertices, when combined with bit-parallelism, performs consistently betterthan the theoretical worst-case optimal pivoting of the state-of-the-artalgorithms of Tomita et al. [Theoretical Computer Science, 2006] and Naud\'e[Theoretical Computer Science, 2016]. Experiments show that our algorithm is faster than the worst-case optimalalgorithm of Tomita et al. on 60 out of 74 standard structured and randombenchmark instances: we solve 48 instances 1.2 to 2.2 times faster, and solvethe remaining 12 instances 3.6 to 47.6 times faster. We also see consistentspeed improvements over the algorithm of Naud\'e: solving 61 instances 1.2 to2.4 times faster. To the best of our knowledge, we are the first to achievesuch speed-ups compared to these state-of-the-art algorithms on these standardbenchmarks.
机译:最大集团枚举(MCE)问题在生物学,化学,社会学和图形建模中具有许多应用。尽管对此问题进行了很好的研究,但大多数当前的研究侧重于在大型稀疏图或非常稠密的图中找到解决方案,同时牺牲了代表实际遇到的数据集的最困难的中等密度基准实例的效率。我们证明,已成功应用于最大团簇问题的技术在这些实例上的速度超过了最先进的MCE算法。具体而言,我们证明了基于固定的最大顶点顶点一阶的简单贪婪枢轴选择,当与位并行性结合时,始终比Tomita等人的现有算法的理论上最坏情况的最优枢轴性能更好。 。 [理论计算机科学,2006年]和Naud'e [理论计算机科学,2016年]。实验表明,我们的算法比Tomita等人的最坏情况最优算法要快。在74个标准结构化和随机基准实例中,有60个实例:我们解决48个实例的速度提高了1.2到2.2倍,而其余12个实例的速度提高了3.6到47.6倍。我们还看到与Naud'e算法相比,速度得到了持续改进:解决61个实例的速度提高了1.2到2.4倍。据我们所知,与这些标准基准上的最新技术相比,我们是第一个实现此类加速的公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号